Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077030

RESUMO

Smart hydrogels based on natural polymers present an opportunity to fabricate responsive scaffolds that provide an immediate and reversible reaction to a given stimulus. Modulation of mechanical characteristics is especially interesting in myocyte cultivation, and can be achieved by magnetically controlled stiffening. Here, hyaluronan hydrogels with carbonyl iron particles as a magnetic filler are prepared in a low-toxicity process. Desired mechanical behaviour is achieved using a combination of two cross-linking routes-dynamic Schiff base linkages and ionic cross-linking. We found that gelation time is greatly affected by polymer chain conformation. This factor can surpass the influence of the number of reactive sites, shortening gelation from 5 h to 20 min. Ionic cross-linking efficiency increased with the number of carboxyl groups and led to the storage modulus reaching 103 Pa compared to 101 Pa-102 Pa for gels cross-linked with only Schiff bases. Furthermore, the ability of magnetic particles to induce significant stiffening of the hydrogel through the magnetorheological effect is confirmed, as a 103-times higher storage modulus is achieved in an external magnetic field of 842 kA·m-1. Finally, cytotoxicity testing confirms the ability to produce hydrogels that provide over 75% relative cell viability. Therefore, dual cross-linked hyaluronan-based magneto-responsive hydrogels present a potential material for on-demand mechanically tunable scaffolds usable in myocyte cultivation.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Polímeros , Polissacarídeos , Reologia
3.
Biomacromolecules ; 23(8): 3359-3370, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900922

RESUMO

A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed─an original one using environmentally friendly and biocompatible horseradish peroxidase─represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used.


Assuntos
Compostos de Anilina , Antioxidantes , Compostos de Anilina/química , Antioxidantes/farmacologia , Catálise , Peroxidase do Rábano Silvestre , Polimerização
4.
Carbohydr Polym ; 292: 119661, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725164

RESUMO

Sequential periodate-chlorite oxidation of sodium hyaluronate to 2,3-dicarboxylated hyaluronate (DCH), a novel biocompatible and highly functionalized derivative bearing additional pair of COOH groups at C2 and C3 carbons of oxidized ᴅ-glucuronic acid units, is investigated. The impact of various reaction parameters (time, oxidizer concentration, and molar amount) on DCH's composition, molecular weight, degree of oxidation, and cytotoxicity are investigated to guide the synthesis of DCH derivatives of desired properties. Subsequently, fully (99%) and partially (70%) oxidized DCH derivatives were compared to untreated sodium hyaluronate in terms of anticancer drug cisplatin loading efficacy, carrier capacity, drug release rates, and cytotoxicity towards healthy and cancerous cell lines. DCH derivatives were found to be superior in every aspect, having nearly twice the carrier capacity, significantly slower release rates, and higher efficacy. DCH is thus a highly interesting hyaluronate derivative with an adjustable degree of oxidation, molecular weight, and great potential for further modifications.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Liberação Controlada de Fármacos , Peso Molecular , Oxirredução
5.
Carbohydr Polym ; 279: 119022, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980346

RESUMO

A little is known about the link between the macromolecular architecture of dialdehyde polysaccharides (DAPs), their crosslinking capabilities, and the properties of resulting hydrogels. Here, DAPs based on cellulose, dextrin, dextran, and hyaluronate were compared as crosslinkers for poly(vinyl alcohol), PVA. The swelling, network parameters, viscoelastic properties, porosity, and cytotoxicity of PVA/DAP hydrogels were investigated concerning the crosslinker structure, molecular weight, aldehyde group density per macromolecule, and the size of spontaneously formed crosslinker nano-assemblies. Generally, crosslinkers based on linear polysaccharides (cellulose, hyaluronate) performed more reliably, while the presence of branching could be both beneficial (dextran) but also detrimental (dextrin) at lower crosslinker concentrations. For example, the hydrogel swelling differed by up to one-third (600 vs. 400%) and storage modulus even by up to one half (~7000 vs. ~3500 Pa) depending on crosslinker structure and properties. These differences were rationalized by variances in crosslinking modes derived based on obtained data.


Assuntos
Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Polissacarídeos/química , Álcool de Polivinil/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Hidrogéis/farmacologia , Camundongos , Células NIH 3T3 , Polissacarídeos/farmacologia , Álcool de Polivinil/farmacologia
6.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769373

RESUMO

An innovative multi-step phase separation process was used to prepare tissue culture for the polystyrene-based, hierarchically structured substrates, which mimicked in vivo microenvironment and architecture. Macro- (pore area from 3000 to 18,000 µm2; roughness (Ra) 7.2 ± 0.1 µm) and meso- (pore area from 50 to 300 µm2; Ra 1.1 ± 0.1 µm) structured substrates covered with micro-pores (area around 3 µm2) were prepared and characterised. Both types of substrate were suitable for human-induced pluripotent stem cell (hiPSC) cultivation and were found to be beneficial for the induction of cardiomyogenesis in hiPSC. This was confirmed both by the number of promoted proliferated cells and the expressions of specific markers (Nkx2.5, MYH6, MYL2, and MYL7). Moreover, the substrates amplified the fluorescence signal when Ca2+ flow was monitored. This property, together with cytocompatibility, make this material especially suitable for in vitro studies of cell/material interactions within tissue-mimicking environments.


Assuntos
Materiais Biocompatíveis/química , Diferenciação Celular , Fluorescência , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Poliestirenos/química , Proliferação de Células , Humanos
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638952

RESUMO

The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.


Assuntos
Nanopartículas Metálicas/química , Plasma/metabolismo , Titânio/química , Titânio/metabolismo , Animais , Doadores de Sangue , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Meios de Cultura/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/efeitos adversos , Camundongos , Concentração Osmolar , Tamanho da Partícula , Saliva/metabolismo , Propriedades de Superfície , Titânio/efeitos adversos , Água/metabolismo
8.
Polymers (Basel) ; 13(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917700

RESUMO

The development of antibacterial materials has great importance in avoiding bacterial contamination and the risk of infection for implantable biomaterials. An antibacterial thin film coating on the surface via chemical bonding is a promising technique to keep native bulk material properties unchanged. However, most of the polymeric materials are chemically inert and highly hydrophobic, which makes chemical agent coating challenging Herein, immobilization of chlorhexidine, a broad-spectrum bactericidal cationic compound, onto the polylactic acid surface was performed in a multistep physicochemical method. Direct current plasma was used for surface functionalization, followed by carbodiimide chemistry to link the coupling reagents of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) and N-Hydroxysuccinimide (NHs) to create a free bonding site to anchor the chlorhexidine. Surface characterizations were performed by water contact angle test, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The antibacterial activity was tested using Staphylococcus aureus and Escherichia coli. Finally, in vitro cytocompatibility of the samples was studied using primary mouse embryonic fibroblast cells. It was found that all samples were cytocompatible and the best antibacterial performance observed was the Chlorhexidine immobilized sample after NHs activation.

9.
Carbohydr Polym ; 257: 117562, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541627

RESUMO

Study provides an in-depth analysis of the structure-function relationship of polysaccharide anticancer drug carriers and points out benefits and potential drawbacks of differences in polysaccharide glycosidic bonding, branching and drug binding mode of the carriers. Cellulose, dextrin, dextran and hyaluronic acid have been regioselectively oxidized to respective dicarboxylated derivatives, allowing them to directly conjugate cisplatin, while preserving their major structural features intact. The structure of source polysaccharide has crucial impact on conjugation effectiveness, carrier capacity, drug release rates, in vitro cytotoxicity and cellular uptake. For example, while branched structure of dextrin-based carrier partially counter the undesirable initial burst release, it also attenuates the cellular uptake and the cytotoxicity of carried drug. Linear polysaccharides containing ß-(1→4) glycosidic bonds and oxidized at C2 and C3 (cellulose and hyaluronate) have the best overall combination of structural features for improved drug delivery applications including potentiation of the cisplatin efficacy towards malignances.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Oxigênio/química , Polissacarídeos/química , Animais , Celulose/química , Dextranos/química , Dextrinas/química , Liberação Controlada de Fármacos , Glicosídeos/química , Humanos , Ácido Hialurônico/química , Técnicas In Vitro , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Células NIH 3T3 , Oxirredução , Platina/química
10.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419082

RESUMO

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Polímeros/farmacologia , Pirróis/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Corpos Embrioides/citologia , Expressão Gênica/efeitos dos fármacos , Camundongos , Estrutura Molecular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fator de Transcrição PAX6/genética , Polímeros/química , Pirróis/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética
11.
Int J Biol Macromol ; 167: 1468-1478, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212108

RESUMO

The design of improved biopolymeric based hydrogel materials with high load-capacity to serve as biocompatible drug carriers is a challenging task with vital implications in health sciences. In this work, chitosan crosslinked dialdehyde xanthan gum interpenetrated hydroxypropyl methylcellulose gels were developed for the controlled delivery of different antibiotic drugs including ampicillin, minocycline and rifampicin. The prepared hydrogel scaffolds were characterized by rheology method, FTIR, SEM, TGA and compression analysis. In addition, gelation kinetics, swelling, in vitro degradation and drug release rate were studied under simulated gastrointestinal fluid conditions of pH 2.0 and 7.4 at 37 °C. Results demonstrated the gel composition and structure affected drug release kinetics. The release study showed more than 50% cumulative release within 24 h for all investigated antibiotic drugs. In vitro cell cytocompatibility using mouse embryonic fibroblast cell lines depicted ≥80% cell viability, indicating the gels are non-toxic. Finally, the antibacterial activity of loaded gels was evaluated against Gram-negative and positive bacteria (Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia), which correlated well with swelling and drug release results. Overall, the present study demonstrated that the produced hydrogel scaffolds serves as promising material for controlled antibiotic delivery towards microbial growth inhibition.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Portadores de Fármacos/química , Hidrogéis/química , Derivados da Hipromelose/química , Polissacarídeos Bacterianos/química , Ampicilina/farmacologia , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos , Hidrogéis/síntese química , Hidrogéis/farmacocinética , Hidrogéis/toxicidade , Concentração de Íons de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Minociclina/farmacologia , Reologia , Rifampina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria
12.
Carbohydr Polym ; 253: 117244, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278999

RESUMO

Novel composite films combining biocompatible polysaccharides with conducting polyaniline (PANI) were prepared via the in-situ polymerization of aniline hydrochloride in the presence of sodium hyaluronate (SH) or chitosan (CH). The composite films possess very good cytocompatibility in terms of adhesion and proliferation of two lines of human induced pluripotent stem cells (hiPSC). Moreover, the cardiomyogenesis and even formation of beating clusters were successfully induced on the films. The proportion of formed cardiomyocytes demonstrated excellent properties of composites for tissue engineering of stimuli-responsive tissues. The testing also demonstrated antibacterial activity of the films against E. coli and PANI-SH was able to reduce bacterial growth from 2 × 105 to < 1 cfu cm-2. Physicochemical characterization revealed that the presence of polysaccharides did not notably influence conductivities of the composites being ∼1 and ∼2 S cm-1 for PANI-SH and PANI-CH respectively; however, in comparison with neat PANI, it modified their topography making the films smoother with mean surface roughness of 4 (PANI-SH) and 14 nm (PANI-CH). The combination of conductivity, antibacterial activity and mainly cytocompatibility with hiPSC opens wide application potential of these polysaccharide-based composites.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Quitosana/química , Ácido Hialurônico/química , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Nanocompostos/química , Compostos de Anilina/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Condutividade Elétrica , Escherichia coli/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Polimerização , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Engenharia Tecidual/métodos
14.
Polymers (Basel) ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202672

RESUMO

In this study we report the preparation of novel multicomponent hydrogels as potential biomaterials for injectable hydrogels comprised of alginate, casein and bacterial cellulose impregnated with iron nanoparticles (BCF). These hydrogels demonstrated amide cross-linking of alginate-casein, ionic cross-linking of alginate and supramolecular interaction due to incorporation of BCF. Incorporation of BCF into the hydrogels based on natural biopolymers was done to reinforce the hydrogels and impart magnetic properties critical for targeted drug delivery. This study aimed to improve overall properties of alginate/casein hydrogels by varying the BCF loading. The physico-chemical properties of gels were characterized via FTIR, XRD, DSC, TGA, VSM and mechanical compression. In addition, swelling, drug release, antibacterial activity and cytotoxicity studies were also conducted on these hydrogels. The results indicated that incorporation of BCF in alginate/casein hydrogels led to mechanically stronger gels with magnetic properties, increased porosity and hence increased swelling. A porous structure, which is essential for migration of cells and biomolecule transportation, was confirmed from microscopic analysis. The porous internal structure promoted cell viability, which was confirmed through MTT assay of fibroblasts. Moreover, a hydrogel can be useful for the delivery of essential drugs or biomolecules in a sustained manner for longer durations. These hydrogels are porous, cell viable and possess mechanical properties that match closely to the native tissue. Collectively, these hybrid alginate-casein hydrogels laden with BCF can be fabricated by a facile approach for potential wound healing applications.

15.
Mater Sci Eng C Mater Biol Appl ; 116: 111242, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806291

RESUMO

2,3-Dialdehyde cellulose (DAC) was used as an efficient and low-toxicity crosslinker to prepare thin PVA/DAC hydrogel films designed for topical applications such as drug-loaded patches, wound dressings or cosmetic products. An optimization of hydrogel properties was achieved by the variation of two factors - the amount of crosslinker and the weight-average molecular weight (Mw) of the source PVA. The role of each factor to network parameters, mechanical, rheological and surface properties, hydrogel porosity and transdermal absorption is discussed. The best results were obtained for hydrogel films prepared using 0.25 wt% of DAC and PVA with Mw = 130 kDa, which had a high porosity and drug-loading capacity (high water content), mechanical properties allowing easy handling, best adherence to the skin from all tested samples and improved transdermal drug-delivery. Hydrogel films are biocompatible, show no cytotoxicity and have no negative impact on cell growth and morphology in their presence. Furthermore, hydrogels do not support cell migration and attachment to their surface, which should ensure easy removal of hydrogel patches even from wounded or damaged skin after use.


Assuntos
Bandagens , Álcool de Polivinil , Celulose/análogos & derivados , Hidrogéis
16.
Mater Sci Eng C Mater Biol Appl ; 113: 110986, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487402

RESUMO

Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.


Assuntos
Compostos de Anilina/química , Materiais Biocompatíveis/química , Organofosfonatos/química , Polímeros/química , Pirróis/química , Compostos de Anilina/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Camundongos , Células-Tronco Embrionárias Murinas , Polímeros/farmacologia , Pirróis/farmacologia
17.
Polymers (Basel) ; 11(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718055

RESUMO

Hemocompatibility is an essential prerequisite for the application of materials in the field of biomedicine and biosensing. In addition, mixed ionic and electronic conductivity of conducting polymers is an advantageous property for these applications. Heparin-like materials containing sulfate, sulfamic, and carboxylic groups may have an anticoagulation effect. Therefore, sodium dodecylbenzenesulfonate, 2-aminoethane-1-sulfonic acid and N-(2-acetamido)-2-aminoethanesulfonic acid were used for modification of the representative of conducting polymers, polyaniline, and the resulting products were studied in the context of interactions with human blood. The anticoagulation activity was then correlated to surface energy and conductivity of the materials. Results show that anticoagulation activity is highly affected by the presence of suitable functional groups originating from the used heparin-like substances, and by the properties of polyaniline polymer itself.

18.
Mater Sci Eng C Mater Biol Appl ; 105: 110029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546373

RESUMO

The cytocompatibility of cardiomyocytes derived from embryonic stem cells and neural progenitors, which were seeded on the surface of composite films made of graphene oxide (GO) and polypyrrole (PPy-GO) or poly(3,4-ethylenedioxythiophene) (PEDOT-GO) are reported. The GO incorporated in the composite matrix contributes to the patterning of the composite surface, while the electrically conducting PPy and PEDOT serve as ion-to-electron transducers facilitating electrical stimulation/sensing. The films were fabricated by a simple one-step electropolymerization procedure on electrically conducting indium tin oxide (ITO) and graphene paper (GP) substrates. Factors affecting the cell behaviour, i.e. the surface topography, wettability, and electrical surface conductivity, were studied. The PPy-GO and PEDOT-GO prepared on ITO exhibited high surface conductivity, especially in the case of the ITO/PPy-GO composite. We found that for cardiomyocytes, the PPy-GO and PEDOT-GO composites counteracted the negative effect of the GP substrate that inhibited their growth. Both the PPy-GO and PEDOT-GO composites prepared on ITO and GP significantly decreased the cytocompatibility of neural progenitors. The presented results enhance the knowledge about the biological properties of electroactive materials, which are critical for tissue engineering, especially in context stimuli-responsive scaffolds.


Assuntos
Condutividade Elétrica , Eletroquímica , Grafite/farmacologia , Miócitos Cardíacos/citologia , Células-Tronco Neurais/citologia , Polímeros/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Polímeros/química , Pirróis/química , Água/química
19.
Carbohydr Polym ; 218: 333-342, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31221338

RESUMO

Solubilized dialdehyde cellulose (DAC), an efficient crosslinking agent for poly(vinyl alcohol) (PVA), provides less toxic alternative to current synthetic crosslinking agents such as glutaraldehyde, while simultaneously allowing for the preparation of hydrogels with comparably better characteristics. PVA/DAC hydrogels prepared using 0.5, 1 and 1.5 wt% of DAC were analyzed in terms of mechanical, swelling and cytotoxicity characteristics. Materials properties of PVA/DAC hydrogels range from stiff substances to soft viscoelastic gels capable of holding large amounts of water. Superior mechanical properties, porosity and surface area in comparison with analogical PVA/glutaraldehyde hydrogels were observed. Biological studies showed low toxicity and good biocompatibility of PVA/DAC hydrogels. Potential of PVA/DAC in mesh-controlled release of biologically active compounds was investigated using ibuprofen, rutin and phenanthriplatin. Hydrogel loaded with anticancer drug phenantriplatin was found effective against alveolar cancer cell line A549 under in vitro conditions.


Assuntos
Materiais Biocompatíveis/química , Celulose/análogos & derivados , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Álcool de Polivinil/química , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular Tumoral , Celulose/química , Celulose/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Módulo de Elasticidade , Humanos , Hidrogéis/toxicidade , Ibuprofeno/química , Camundongos , Compostos Organoplatínicos/química , Fenantridinas/química , Álcool de Polivinil/toxicidade , Rutina/química , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/toxicidade
20.
Carbohydr Polym ; 219: 423-430, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151543

RESUMO

Colloidal polyaniline dispersions stabilized with biocompatible polysaccharides, sodium hyaluronate and chitosan (both with two different molecular weights), were successfully formulated. The colloids were characterized by UV-vis spectra, particle-size distributions and morphology, as well as by their biological properties in terms of cytotoxicity and antibacterial activity. Colloids containing both chitosan and hyaluronate showed only mild cytotoxicities, which were mainly governed by the concentration of conducting polyaniline in the colloid. Antibacterial activity of the samples, however, depended both on the type of polysaccharide and the ratio between the stabilizer and polyaniline mass. The colloid synthetized using 0.2 M aniline hydrochloride, 0.1 M ammonium persulfate, and 1 wt.% sodium hyaluronate of molecular weight of 1.8-2.1 × 106 exhibited the highest antibacterial activity against both gram positive and gram negative bacteria. This formulation, therefore, allowed for the formation of potentially stimuli-responsive antibacterial colloidal particles with low cytotoxicity.


Assuntos
Compostos de Anilina , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Coloides , Ácido Hialurônico/química , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Coloides/química , Coloides/farmacologia , Escherichia coli/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Nanocompostos/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...